常用神经示踪剂及其示踪特点

【摘要】 丰富的神经示踪技术极大的促进了神经解剖学的发展,为神经生物学的各种研究提供了良好基础,在此,我们概述了常用神经示踪剂及其示踪特点,重点介绍了各种荧光染料和植物凝集素IB4的示踪特点。

【关键词】 神经示踪剂;辣根过氧化物酶;荧光染料;植物凝集素IB4;病毒

Common characteristics of the neural tracers

  Zhu He1,2, Li Li2, Zhao Lei2, Ma Ketao2, Si Junqiang2

  (Shihezhi University, Shihezhi Xinjiang 832002)

自20世纪70年代初Kristenson将辣根过氧化物酶(HRP)应用于追踪神经纤维以来,该方面的研究取得了的迅猛发展。此后,许多用途广泛、敏感性强并能选择性地进行顺行、逆行标记或同时具有顺、逆行标记的追踪物质被应用到神经纤维的研究,对神经解剖学的发展起到了积极的推动作用。现就常用的神经示踪剂及其示踪特点综述如下:

  1辣根过氧化物酶

  1.1辣根过氧化物酶(Horseradish peroxidase,HRP) HRP是一种含血红素基的植物糖蛋白。HRP法是20世纪70年代发展并被广泛应用的一种神经追踪方法,但由于HRP显影需要许多复杂的免疫组织化学技术,而且HRP参与细胞代谢,不能在细胞内长期存留,易扩散到邻近组织造成神经元的误染,其反应产物较不稳定,易丢失,另外还存在“再摄取”现象[1], 使得HRP在神经逆行示踪方面的应用大大减少。

订货信息:

OBT7271 HORSERADISH PEROXIDASE   12107 1 g AbD Serotec
OBT7272 HORSERADISH PEROXIDASE   2485 25 mg AbD Serotec
OBT7273 HORSERADISH PEROXIDASE   4314 100 mg AbD Serotec

 

  1.2 霍乱毒素亚单位B结合的辣根过氧化物酶(CBHRP)R. N.Ranson等[2] 对传统的辣根过氧化物酶的染色方法进行了改进,采用结合了霍乱毒素亚单位B的辣根过氧化物酶(CBHRP)作为示踪剂,清晰显示了神经元的胞体和轴突结构。近来也有采用四甲基联苯胺(TMB)为底物替代传统的二氨基联苯胺(DAB)来示踪豚鼠的面神经[3]的报道。TMB与DAB相比有不致癌和HRP反应灵敏度高,操作简便,步骤少,用时短及成本低等诸多优点。

ADI-80-0350 TMB substrate, (10 ml)   360 10 ml ENZO
ADI-80-0615 TMB substrate, (5 ml)   360 5 ml ENZO
ADI-80-1805 TMB substrate, (50 ml)   600 50 ml ENZO
BUF022 DAB SUBSTRATE BUFFER   1292 2 x 50ml AbD Serotec

 

  HRP法标记的神经元经组织化学法处理后,细胞失去了活性,无法进行膜片箝等神经电生理的研究,限制了HRP法在这一领域内的应用。

  2荧光染料

  从上世纪50年代开始,荧光染料示踪技术发展起来。它贮存稳定,特别是组合采用不同的荧光染料分别标记神经元胞核和胞浆,可实现荧光双标或多重标记,这是荧光素示踪的一个zui大优点。这种示踪剂染色后只需使用荧光显微镜,便可观察到已被标记的神经纤维或胞体。下面介绍几种常用的荧光素。

  2.1 固蓝(Fast blue,FB)FB系水溶性染料,其颗粒较细密,易于被神经轴索摄取,所以标记神经纤维或胞体多于其他染料,易于从标记细胞内扩散到周围组织,照射时褪色较快,即使保存在低温、避光条件下,仍不能长期保存。对需要标记后较长时间的观察,或需分离培养神经元细胞进行实验研究则不太理想。

订货信息

17740-5 Fast Blue   15827 5mg polysiences
17740-2 Fast Blue   7446 2mg polysiences
17740-1 Fast Blue   4131 1mg polysiences

  2.2 荧光金(Fluoro gold,FG)FG系脂溶性染料,能标记细胞质,它在紫外线(323nm)激发下发金黄色光(408nm),属慢速轴浆运输类,细胞核不着色,能很好显示树突分支,细胞外无荧光染料渗漏,不易扩散,与周围组织分界清晰,褪色比较慢,可以经受许多组织学染色处理,因而可以和HRP、免疫组织化学等方法结合。其在细胞质内的存在不超过3周[4]。

订货信息:厂家 fluorochrome

780000 荧光金 Fluoro-Gold 10mg ¥2000
780001 荧光金 Fluoro-Gold 50mg ¥6700
780002 荧光金 Fluoro-Gold 100mg ¥12800
780003 荧光金 Fluoro-Gold 150mg ¥18000
780004 荧光金 Fluoro-Gold 200mg ¥21500
781001 荧光金抗体 Antibody to Fluoro-Gold 0.1ml×¥1 5700
781002 荧光金抗体 Antibody to Fluoro-Gold 0.1ml×¥2 9800
781003 荧光金抗体 Antibody to Fluoro-Gold 0.1ml×3 12800
782001 红色荧光金 Fluoro-Ruby 30mg 3200

 

  有学者将其用于视神经的研究,标记了视神经纤维的分布路径和走向[5]。Takayuki Nakajima等[6]采用荧光金结合SP、CGRP免疫荧光标记反应,发现大鼠L6DRG和S1DRG内均存在大小不等的SP/CGRP双标记神经元及中小型大小的FG/SP、FG/CGRP双标记阳性细胞和FG/SP/CGRP三标记阳性细胞,这些标记阳性细胞可能与包皮系带损伤后阴茎自发性疼痛的产生和传递有关。

  2.3 羰化青(1,1′ Dioctadecyl3,3,3′,3′ tetramethylindocarbocyanine perchlorate,DiI) DiI是一种紫红色晶体,具有高度的亲脂性,在水中的溶解度很低,通常用乙醇溶解。它荧光强而稳定,无毒性,不影响被标记细胞的存活、生长,在标记细胞内消失慢、单纯沿脂质膜扩散,有良好的轴突特异性,且对过路纤维影响小。在549nm激发光下可以产生发射波长为565 nm红色荧光[7]。

  1986年Honig[8]等报道DiI可作为荧光示踪剂用于培养的神经细胞和骨骼肌细胞。DiI对试管内动物胚胎的感觉和运动神经元没有显著的毒性作用,因而适用于活的组织、细胞的示踪、标记。但也有研究报道显示DiI易于淬灭及易向神经元胞体外扩散的问题[9]。总的来说, DiI具有在细胞内稳定表达、标记细胞形态良好、对活体细胞无毒性、在标记细胞内消失慢[10]、使用简便、染色速度快的特点。尤其是不影响被标记细胞的电生理和生化特性使其越来越多的被用于神经科学领域的研究[11]。

AAT-22035 DiIC12(3) perchlorate [1,1-Didodecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate]   975 25 mg AAT Bioquest
AAT-22044 DiIC16(3) perchlorate[1,1-Dihexadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate]   975 25 mg AAT Bioquest
AAT-22102 DiI perchlorate [1,1-Dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate]   975 100 mg AAT Bioquest

 

  2.4 荧光染料双标染色法 双标技术是通过不同示踪剂对细胞核、细胞浆亲和力不同,用两种示踪剂对不同的神经纤维或靶器官进行标识。

  2.4.1 固蓝(Fast Blue) 和核黄(Nclear Yellow) 双标染色 Viterbo F等[12] 用固蓝和核黄双标染色研究损伤后的胫神经和腓神经的侧芽来源情况,对神经纤维进行了直接的形态学观察。

订货信息:

AAT-17539 Nuclear Yellow [Hoechst S769121]   2535 25 mg AAT Bioquest
17740-5 Fast Blue   15827 5mg polysiences
17740-2 Fast Blue   7446 2mg polysiences
17740-1 Fast Blue   4131 1mg polysiences

  2.4.2固蓝(Fast Blue)和双脒基黄(Diamidino Yellow) 双标染色 双脒基黄(Diamidino Yellow)荧光激发波长360 nm,经神经轴浆流的逆行转运可达细胞核,细胞核呈绿色、黄绿色或黄白色。激发后荧光很强时,细胞浆有时映出部分黄绿色或黄白色。C.T. Byers等[13]比较了固蓝(Fast Blue)和双脒基黄(Diamidino Yellow)逆行标记神经元的效力,研究结果显示无论是单独使用还是二者按任何次序联合使用,被标记的神经元的数目是一致的。证明使用FB和DY进行荧光双标的方法是可行的。相对于FB和其他的荧光染料组合形式,DY和FB的组合更为合理。DY能够标记细胞核的同时FB可以清晰的显示细胞浆,在同一荧光显微镜下,二者可以清晰的显示被标记的细胞而充分互补。

  2.4.3 台盼蓝(Trypan Blue) 和双脒基黄(Diamidino Yellow) 双标染色 台盼蓝荧光激发波长为375 nm,经神经轴浆流的逆行转运可达细胞浆,激发后细胞浆呈亮蓝色。Yang等[14] 使用双脒基黄和台盼蓝荧光双标研究切断腓总神经后行腓总神经断端和胫总神经吻合的脊髓背根神经节细胞发现,在相应L4L6背根神经节及相应脊髓腰膨大中分别存在双脒基黄和台盼蓝双标的细胞,说明两神经之间有交叉支配的存在,表明神经端侧缝合后的再生方式是侧枝芽生。

  1991年Fritzsch和Sonntag[15]比较研究了荧光素和生物素葡糖聚胺的标记效力,随后Harsh[16]等在1991年又比较了FG素和DiI两者之间的标记效能。1993年,Brushart等人又分别比较研究了荧光素和HRP之间的标记效能。这几种示踪剂的组合的弊端是在同一显微镜下不能被同时观察到。更重要的是,生物素葡糖聚胺和DiI通常情况下不被未损伤神经摄取的特性决定使用两者作为标记物时必须先切断或损伤被标记神经。常用的几种荧光染料中,TB和FB能够标记细胞浆,NY和DY能够特异的结合被标记细胞的细胞核。

 由于荧光素分子量小,用于逆行追踪的共同问题是易于扩散,比HRP法更难于确定有效注射部位。与HRP法相似,荧光素示踪法也存在过路纤维摄入问题。褪色是荧光素的一大缺点,在激发光照射下较快褪色,因此允许观察的时间短。即使在低温、避光条件下,切片保存时间仍有限,不能长期保存。

  3 生物素葡糖聚胺(Biotindextran amine, BDA)

  BDA应用于轴浆运输的各种示踪剂,常用来研究神经元的分支投射,但很少有直接用于观察周围神经局部轴突的研究。BDA具有保存时间长,并可与多种荧光追踪剂及各种免疫组织化学技术相结合的优点[17],能满足光镜及电镜下观察的要求。相对于HRP与荧光素示踪剂,经处理的BDA标记组织标本可以保存6个月以上,不影响zui终显影结果。

  4病毒

  常用在神经通路示踪方面的两类病毒是腺病毒(Adenovirus)、腺病毒伴随病毒(Adenoassociatedvirus,rAAV)和疱疹病毒。

  腺病毒和腺病毒伴随病毒在神经示踪中的应用得益于绿色荧光蛋白(Greenfluorescenceprotein,GFP)基因的发现。日本科学家下村修、美国科学家马丁·沙尔菲和美籍华裔科学家钱永健正是因为在发现和研究绿色荧光蛋白方面做出的重大贡献摘取了2008年的诺贝尔化学奖。

  GFP来源于维多利亚水母(AequoreaVictoria),其荧光发射峰在509nm,zui大激发波长为395 nm,并在470 nm处有1个肩峰[18],其化学性质相当稳定[19]。荧光蛋白的显著优点是与生物相容性好,标记生物分子后不影响其生物活性,发光强度高,易于识别与检测。但是,目前荧光蛋白种类还比较少,而且大部分都是从生物体中提取,较难大批量生产[20] 。

  4.1腺病毒(Adenovirus)、腺病毒伴随病毒(Adenoassociatedvirus,rAAV)构建表达GFP的腺病毒和rAAV载体,用于神经细胞和神经通路的示踪,具有*的优点。GFP产生的荧光可以耐受光漂白和福尔马林的固定,能够制成长期保存的标本[21],可用于不同神经元的形态学分析和纤维的研究,尤其适用于某些特定功能的局部神经环路的研究。

  但是注入GFP 基因重组病毒的多少将影响GFP荧光的强弱。如果注入重组病毒过少时,荧光浅淡而不易观察,如果注入的GFP基因重组病毒较多,它在标记神经元及突起的同时,会增多对神经胶质细胞的标记,产生干扰[22]。

  4.2 疱疹病毒(Herper virus)疱疹病毒的主要特点是亲神经性和跨神经元传递。疱疹病毒是具有复制能力的病毒,作为神经通路的示踪剂,它能够对示踪信号进行放大,增加了示踪的灵敏度。在应用疱疹病毒作为神经示踪剂时,对病毒毒株的选择对实验成败具有重要的意义。

  5植物凝集素IB4

  凝集素(Lectins)是一类从各种植物种子和动物组织中提取的糖蛋白或结合糖的蛋白。凝集素zui大的特点是能识别细胞膜中复杂的碳水化合物结构,即细胞膜表面的糖基。

  作为初级伤害性感受器的小直径感觉神经元根据和IB4结合能力的不同可以分为植物凝集素阳性的非肽能神经元和植物凝集素阴性的肽能神经元,前者呈胶质源性营养因子依赖性,而后者则呈神经生长因子依赖性[23]。植物凝集素阳性的非肽能神经元的动作电位相对于植物凝集素阴性的肽能神经元而言,其持续时间较长、具有更高密度的河豚毒素不敏感的钠电流以及更小的热伤害刺激电流[24]。Belyantseva等[25]发现在遭受慢性损伤后,植物凝集素阴性的肽能神经元会大量的增生。

  综上所述,辣根过氧化物酶zui早应用于神经的逆行示踪,但由于使用方法较复杂且稳定性差、易扩散,限制了它的应用;荧光示踪剂使用方法简便易行、易观察,但存在荧光淬灭现象,仅适用于短期观察,而生物素葡聚糖胺则不存在这种现象,其结果可以保存较长时间;其他毒素或病毒鳌合物能良好地显示神经元链或网络,但目前在神经示踪方面应用较少;物凝集素IB4能特异地和脊神经节内与伤害性刺激相关的小型神经元结合,为脊髓背根神经节痛觉相关小直径细胞的研究提供了极大的方便。

【参考文献】
  1 Kamijo Y, Koyama J, Oikawa S, et al. Regenerative process of the facial nerve: rate of regeneration of fibers and their bifurcations[J]. Neurosci Res, 2003, 46(2): 135-143.

  2 Ranson RN, Motawei K, Pyner S, et al. The paraventricular nucleus of the hypothalamus sends efferents to the spinal cord of the rat that closely appose sympathetic preganglionic neurones projecting to the slate ganglion[J]. Experimental Brain Research, 1998, 120(2): 164-172.

  3 Sahni V, Qi Y and Frostick S. Peripheral nerve regeneration[J]. Eur Surg, 2005, 37(4): 187-192.

  4 SellesNavarro I, VillggasPerez MP, SalvadorSilva M, et al. Retinal ganglion cell death after different transient periods of pressureinduced ischemia and survival intervals. A quantitative in vivo study[J]. Invest Ophthalmol Vis, 1996, 37(10): 2002-2014.

  5 Chen Pei, Wang Peng, Chen Guangli and Gong Shusheng. Study on remodeling of astrocytes in facial neuclus after peripheral injury[J]. Journal of Huazhong University of Science and Technology, 2005, 25(6): 726-728.

  6 Takayuki N, Seiji O, Yamamoto S , et al. Differences in innervation and innervated neurons between hip and inguinal skin[J]. Clinical Orthopaedics and Related Research, 2008, 466(10): 2527-2532.

  7 Swift MJ, Crago PE, Grill WM. Applied electric fields acceletate the diffusion rate and, increase the diffusion distance of DiI in fixed tissue[J]. Neurosci Methods, 2005: 141(1): 155-163.

  8 Honig NM, Hume RI. Fluorescent carbocyanine dyes allow livingneurons of identified origin to be studied in long term cultures[J]. Cell Biol, 1986, 103(1): 171-187.

  9 Mandado M , Molist P, Anadón R. A DiItracing study of the neural connections of the pineal organ in two elasmobranchs (Scyliorhinus canicula and Raja montagui) suggests a pineal projection to the midbrain GnRHimmunoreactive nucleus[J]. Cell and Tissue Research, 2001, 303(3): 391-401.

  10Fernandez B, Bellido D, Vilella E, et al. Lipoprotein lipasemediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptorindependent internalization pathway[J]. Journal of Lipid Research, 1996, 37(3): 464-481.

  11Paul A. st. John. Toxicity of “DiI” for embryonic rat motoneurons and sensory meurons in vitro[J]. Life Sci, 1991, 49(26): 2013-2021.

  12Viterbo F, Trindade JC, Hoshino K, et al. Two endtoside neurorrhaphies and nerve graft with removal of the epineural sheath experimental study in rats[J]. Br J Plast Surg, 1994 , 47(2): 75-80.

  13Byers CT, Fan R, Messina A, et al. Comparing the efficacy of two fluorescent retrograde tracers in labeling the motor and sensory neuron populations of the rat sciatic nerve[J]. Journal of Neuroscience Methods, 2002, 114(1): 159-164.

  14Yang L, Zhang FX, Huang F, et al. Peripheral nerve injury induces transsynaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord[J]. Eur J Neurosci, 2004, 19(6): 871-883.

  15Curtis R,Tonra JR, Stark JL. Neuronal injury increases retrograde axonal transport of the neurotrophins to spinal sensory neurons and motor neurons via multiple receptor mechanisms[J]. Mol Cell Neurosci, 1998, 12(1): 105-118.

  16Harsh C, Archibald SJ, Madison RD. Doublelabelling of saphenous nerve neurone pools: a model for determining the accuracy of axon regeneration at the single neuron level[J]. J Neurosci Methods, 1991, 39(1): 123-129.

  17Fritzsch B, Sonntag R. Sequential double labelling with different fluorescent dyes coupled to dextran amines as a tool to estimate the accuracy of tracer application and of regeneration[J]. J Neurosci Methods, 1991, 39(1): 9-17.

  18PalmG, Zdanov J, Gaitanaris AG, et al. The structural basis for spectral variations in green fluorescent protein[J]. Nature Struct Biol, 1997, 4(2): 361-365.

  19Heim R, Cubitt AB, Tsien RY. Improved green fluorescence[J]. Nature, 1995, 373(6516): 663-672.

  20Anna P, Alberto PG, Domingo RG, et al. Efficacy of the fluorescent dyes fast blue, fluorogold, and diamidino yellow for retrograde tracing to dorsal root ganglia after subcutaneous injection[J]. Journal of Neuroscience Methods, 1998, 86(1): 7-16.

  21Tsien RY.The green fluorescent protein[J]. Annu Rev Biochem, 1998, 67(2): 509-544.

  22常成, 高晓群. 病毒在神经通路示踪中的应用[J]. 中国组织化学与细胞化学杂志, 2004, 13(2): 250-254.

  23Molliver DC, Wright DE, Leitner ML, et al. IB4binding DRG neurons switch from NGF to GDNF dependence in early postnatal life[J]. Neuron, 1997, 19(6): 849-861.

  24Cheryl L. Stucky and Gary RL. Isolectin B4positive andnegative nociceptors are functionally distinct[J]. The Journal of Neuroscience, 1999, 19(15): 6497-6505.

  25Belyantseva IA, Lewin GR. Stability and plasticity of primary afferent projections following nerve regeneration and central degeneration[J]. Eur J Neurosci, 1999, 11(2): 457-469.

lumafluor Red Retrobeads 产品说明书

LumafluorRetroBeads——逆向示踪首先

RetroBeads™逆向示踪荧光微粒是Lumafluor 公司*的逆向示踪产品,且是目前weiyi证实有效的示踪微粒(该产品的有效性经数百篇从无脊椎动物到哺乳动物实验的研究论文证实),目前Lumafluor 公司的绿色和红色荧光示踪微粒产品只能从本公司采购。
  该示踪产品体内注射高度集中不易扩散,信号强,对活细胞或活体无毒,且存留时间大于一年,与大多顺向示踪剂、原位杂交检测技术、免疫组化技术兼容。

部分产品信息如下:

 

货号 品名 包装 目录价 * 品牌
78R170 Red Retrobeads™ 100µl 3667 2200 lumafluor2017
78R180 Red Retrobeads™ IX 100µl 3667 2200 lumafluor2017
78G180 Green Retrobeads™ IX 100µl 3667 2200 lumafluor2017

该说明书总结了大多数使用荧光胶乳微球(beads)作为神经元逆向示踪剂的操作流程,其中关于绿色beads的信息请在本说明书末尾查看。更为详尽的信息请参考Katz, L.C.的以下论文:

1. Katz, L.C., Burkhalter, A., and Dreyer, W.D. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310: 498-500 (1984)

2. Katz, L.C. and Iarovici, D.M. Green fluorescent latex microspheres: a new retrograde tracer. Neuroscience 34: 511-520 (1990)
如有疑问,请邮件咨询info@lumafluor.com 或咨询:919 801-6244Lumafluor中国经销商上海金畔生物科技有限公司。

LumafluorRetroBeads操作说明

一、包装与稀释:

Lumafluor beads包装于一支密封的小瓶内,内含的浓缩beads悬浮于蒸馏水中。如使用红色Beads作为神经通路的逆向示踪,其稀释方法推荐采用:大鼠视皮层内可采用14比例进行稀释而不减少Beads的荧光标记强度和质量。然而对于实验我们不推荐使用稀释的Beads而使用原液进行注射示踪。除蒸馏水外,常规的盐溶液如NaClKCl溶液也可作为稀释液。如使用绿色Beads,则强烈建议使用原液,无需稀释。

二、储存

    为避免蒸发Bead溶液应存放于冰箱内4度冷藏,切忌勿冷冻! 冷冻的Beads将失去效用,无法使用。而变干的beads同样也无法使用(无法重悬),该产品并无明显的使用期限,如按要求存放可保存数年。

 

三、注射:

    Beads使用压力注射,如1 mlHamilton微量注射器或气压注射系统,如需小区域微量注射(30-50 nl),可采用末端30-50 um直径的玻璃电极注射,而常规的逆向示踪(注射量0.1-0.3 ul)可使用更大直径的玻璃电极。尽管如此,即使注入更大的剂量,Beads,也不会明显从注射位点扩散(通常扩散距离少于1mm),因此,为尽量*标记投射到一个较大神经核团的神经元,需使用多点注射。尽管Beads带有负电荷,但是不建议采用离子渗透法注入示踪Beads

四、存活时间:

    在大多数恒温脊椎动物系统中,检测Beads的zui短有效时间是24小时,在48小时内标记强度随着体内注射时间而延长,48小时以后荧光强度基本保持恒定。而在冷血动物中,检测Beads的时间推荐为1周。目前并未检测Beads的zui长可检测期,然而在Beads的荧光强度和质量至少可保持在体内14个月以上不变,而细胞可能会被yongjiu标记。目前并未发现Beads在动物或神经元中表现出毒性作用的报道。

五、固定和处理:

    标准的固定方法是:0.1 M PBS冲洗或灌注后在4%的多聚甲醛(0.1 M PBS配制,pH 7.4)中固定,用戊二醛固定会产生大量的组织自发荧光,妨碍Beads标记的神经元,并且绿色Beads在戊二醛固定的组织中将*观察不到,因此应尽量避免采用。如采用冰冻切片,切片应用PBS漂洗后用明胶包被的载玻片贴片晾干,在*风干后,再用二甲苯透明1分钟,然后用荧光封片剂(FluoromountKrystalon)封片。Fluoromount可从Atomergic Chemetals Corp., Farmingdale, NY)公司购买; Krystalon可从

Harleco (EM IndustriesGibbstown, NJ)购买。切片只可短期暴露在乙醇或二甲苯中,但是长时间暴露(大于5分钟)会损坏BeadsBeads 对甘油非常敏感,在甘油环境中荧光会迅速萃灭,因此切忌使用甘油类封片剂,如无法避免,还可采用水杨酸甲酯代替甘油作为封片剂。封片后的切片如存放于黑暗环境中,荧光Beads标记的细胞可保持一年不萃灭(但是切片的自身荧光背景会增加)。迄今为止,还没有成功采用塑胶材料包被Beads标记的组织的记录。

  • 观察:

    红色Beads中的染料为罗丹明,因此所有与罗丹明匹配的荧光滤镜均可使用,部分老的尼康公司的罗丹明滤镜因背景较高,可能导致无法观察到荧光Beads,通常Zeiss Leitz的标准罗丹明滤镜可获得较好的观察效果。而大多绿色荧光滤镜均可较好地观察绿色Beads的荧光结果,设置为荧光黄的滤镜可获得较强的明亮荧光,但是同时也带来较高的背景干扰。较宽波段的荧光滤镜比窄波段的荧光滤镜可以获得更强的荧光信号。在长时间的观察和拍照下Beads的荧光也不会淬灭。

  在低倍数或低数值孔径物镜下( X4, X10)通常难以观察到Bads的荧光信号,只有细胞被显著标记,X10的油镜(数值孔径大于0.4)或者更大倍数的物镜才可观察到。通常情况下,X 25的油镜可以清晰地观察到低倍镜下无法观察到的标记细胞。物镜的选用对绿色荧光Beads尤其重要。在做出实验失败的决定前(在目标区域无法观察到标记细胞),可先用油镜仔细观察注射位点附近的细胞是否被标记,此处应该观察到大量的标记细胞。

对使用绿色荧光Beads标记的额外提醒:目前已发现绿色荧光Beads在年青动物比年老动物中标记更为理想的情况,此外,年青动物的组织自发荧光(背景)也更低,因此,假如可以的话,在使用绿色荧光Beads做逆向标记实验时请尽量使用年轻动物。

因为绿色荧光Beads的激发光段比红色荧光Beads短,因此组织自发荧光是个麻烦,因此,应采用减少自发荧光的步骤以获得更理想的实验结果,这些方法有:(1)使用更薄的切片,如30微米比4050微米理想;(2)使用年青的动物;(3)封片后立即观察拍照(随着时间增加背景也会增加)。

 

!!!!!!!!!!!!!!!!!!!

    对使用色荧光Beads标记的额外提醒:目前已发现绿色荧光Beads在年青动物比年老动物中标记更为理想的情况,此外,年青动物的组织自发荧光(背景)也更低,因此,假如可以的话,在使用绿色荧光Beads做逆向标记实验时请尽量使用年轻动物。

    因为绿色荧光Beads的激发光段比红色荧光Beads短,因此组织自发荧光是个麻烦,因此,应采用减少自发荧光的步骤以获得更理想的实验结果,这些方法有:(1)使用更薄的切片,如30微米比4050微米理想;(2)使用年青的动物;(3)封片后立即观察拍照(随着时间增加背景也会增加)。

 

Protocols for Use of Fluorescent Latex Microspheres (rev. 11/07)

This sheet summarizes most of the procedures for using fluorescent latex microspheres, or “beads” as a retrograde neuronal tracer. Special information about green beads is at the end of this protocol. Further details are presented in: Katz, L.C., Burkhalter, A., and Dreyer, W.D. Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310: 498-500 (1984), and Katz, L.C. and Iarovici, D.M. Green fluorescent latex microspheres: a new retrograde tracer. Neuroscience 34: 511-520 (1990). Questions, problems, or comments concerning the use of this material can be directed to: info@lumafluor.com or phone 919 801-6244.

 

How supplied: The enclosed vial(s) contains a concentrated solution of beads suspended in distilled water. If red beads are being used for retrograde tracing of neuronal pathways, the solution can be used as is, or diluted. In rat visual cortex, dilutions of 1:4 do not appear to reduce the quality or extent of retrograde labeling when using red beads. However, for initial experiments we strongly recommend using the solution full strength. In addition to distilled water, standard salt solutions (NaCl, KCl) can be used as diluents. The green beads, as supplied, are compley prepared for retrograde tracing experiments. Dilution of green beads is not recommended.

Storage: The bead solution should be stored in a humidified container, in a refrigerator, to prevent evaporation. Do not freeze! Beads that have been frozen will not work, and cannot be rescued. If the beads dry out, they cannot be reconstituted. No shelf life has been established for this material, but, when properly stored, it remains good for several years.

Application: Beads are best injected using pressure (e.g. a 1 ml Hamilton syringe, or pressurized air injection system). For local circuit work, very small volumes (30-50 nl) have been injected through glass pipettes with 30-50 mm diameter tips. For routine retrograde tracing, larger volumes (0.1-0.3 ml) and larger diameter pipette tips are used. However, even with large injections beads do not diffuse far from the injection site (usually less than 1 mm). Thus in order to label all or most of the neurons projecting to a large structure, several injections should be made. Iontophoretic application of beads is not recommended as an effective means to deliver the tracer. However, the beads do have a net negative charge.

Survival times: The minimum effective post-injection survival time in most warm-blooded vertebrate systems is approximay 24 hours. Labeling intensity increases with longer survival, up to 48 hours. After 48 hours, no increase (or decrease) in labeling intensity is observed. These values may be considerably different in cold-blooded animals, and initial survival times of a week are recommended. The maximum survival time has not been established, but labeling is unchanged in either quality or extent even after 14 month survival times. Cells probably are permanently marked. No toxic effects on either animals or neurons have been observed.

Fixation and processing: Standard fixation is a 0.1 M phosphate buffer wash followed by 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). Glutaraldehyde will produce substantial tissue autofluorescence which may obscure bead-labeled neurons, and should be avoided if possible. Green beads will be compley invisible in glutaraldehyde fixed material. Frozen sections are collected in phosphate buffer, mounted on gelatin-coated slides, and air-dried. After complete drying, slides can be cleared in xylene for 1 minute, and covers lipped with Fluoromount or Krystalon. Fluoromount is available from Atomergic Chemetals Corp., Farmingdale, NY; Krystalon from Harleco (EM Industries),Gibbstown, NJ. Brief exposures to alcohols and xylenes are not harmful, but long exposures (over 5 minutes) will destroy the beads. Beads are very sensitive to glycerol, and will fade rapidly if mounted in glycerol-containing solutions. Methyl salicylate is preferable to glycerol in situations where non-permanent clearing/mounting agents are indicated. If slides are kept in the dark, the labelling in cells will not fade for at least one year (although background autofluorescence may increase substantially). Thus far, attempts to retain bead labeling after plastic embedding have not been successful.

Observation: The dye in the red beads is rhodamine, thus any fluorescence filter set for rhodamine can be used. Some older Nikon rhodamine filter sets give a very high background, which can make labeled cells invisible. Good results have been obtained with both Zeiss and Leitz standard rhodamine filters. For green beads, a wide-band fluorescein filter works well. Filter sets for Lucifer yellow give a more intense signal, but at the expense of higher background. Narrow-band fluorescein filters will give a much weaker signal than a broad-band filter. Beads do not fade appreciably even after long periods of observation or photomicrography.

Labeling is usually not visible with low power, low numerical aperture dry objectives (e.g. X4, X10). If cells are strongly labeled, a X10 immersion objective (numerical aperture of 0.4 or greater), or higher power dry objectives, will usually reveal the cells. However, frequently a X25 immersion objective will reveal very clearly labeled cells that lower power objectives miss. These caveats are especially true for green beads. Before deciding that an experiment did not work, examine sections in the vicinity of the injection site with immersion objectives. Numerous locally labeled cells should be present.

Additional information for green bead users: In work that has been done so far, it appears that younger animals transport the label better than older animals. In addition, tissue autofluorescence is lower in the younger animals. Therefore, it is advisable to use younger animals, if possible, in experiments involving green beads.

Because the green beads are excited at shorter wavelengths than red beads, tissue autofluorescence is a greater problem. Therefore, efforts to minimize autofluorescence will produce a better contrast signal. Ways to reduce autofluorescence include: 1) using thinner sections (e.g. 30 um rather than 40 or 50) 2) using younger animals, and 3) examining sections promptly after coverslipping (background increases over time).

 

 

Information

For Reliable, Robust Retrograde Transport, There's Only One Choice: RetroBeads™ from Lumafluor.

RetroBeads™ from Lumafluor–the original microspheres for retrograde tracing and the only microspheres proven effective where it counts: in your experiments. Green and Red fluorescent RetroBeads™ are available exclusively from Lumafluor.

Do not be misled by the unsubstantiated claims of other suppliers!
No matter what they call their products, only Retrobeads™ from Lumafluor have been proven effective by hundreds of published papers in systems ranging from invertebrates to primates, and everything in between.

Lumafluor Retrobeads™:

  • Highly confined injections–superb for detailed connectivity studies.
  • Persist indefiniy (> 1 year!) in living cells, nontoxic.
  • Compatible with most other anterograde tracers, in situ hybridization, and immunohistochemsitry.


 


 

Retrosphere™ Color: Excitation Max (nm) Emission Max (nm)
Green 460 505
Red 530 590

 

New!

Retrobeads™ IX: Retrobeads™ deliver bioactive agents (such as neurotrophins and neurotransmitter agonists/antagonists) to localized regions; retrograde transport allows determining which neurons were exposed to the agents [Riddle et al. Nature 378:189, 1995 and Quattrochi et al. Science 245:984, 1989].

Retrobeads™ IX are specially prepared to facilitate adsorption of proteins and other bioactive compounds. Retrobeads™ IX are also more effective tracers in primate systems than standard Retrobeads™.

上海金畔生物科技有限公司专业代理lumafluor全线产品 。并被有大量现货,欢迎广大科研人员订购 021-50837765

 Lumafluor 中国代理, Lumafluor 上海代理, Lumafluor 北京代理,Lumafluor 广东代理, Lumafluor 江苏代理Lumafluor 湖北代理,Lumafluor 天津,Lumafluor 黑龙江代理,Lumafluor 内蒙古代理,Lumafluor 吉林代理,Lumafluor 福建代理, Lumafluor 江苏代理, Lumafluor 浙江代理, Lumafluor 四川代理,