VA-086 2,2′-Azobis[2-methyl-N-(2-hydroxyethyl)propionamid e]

VA-086
2,2′-Azobis[2-methyl-N-(2-hydroxyethyl)propionamid e]

  • 产品特性
  • 相关资料
  • Q&A
  • 参考文献

VA-086VA-086                               2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamid e]


2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]VA-086                               2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamid e]

中文名称:偶氮二甲基N-2-羟丁基丙烯酰胺

CAS NO.:61551-69-7

英文缩写:不提供

特征


非腈、非离子、不含卤的偶氮重合开始剂

可溶于水、甲醇、乙醇

可以在聚合物末端导入羟基

10小时半减期温度86℃


化学名


2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]


VA-086                               2,2'-Azobis[2-methyl-N-(2-hydroxyethyl)propionamid e]

 

CAS NO. 61551-69-7

分子量 = 288.35



物理性质


外观

白色~微黄色 结晶性粉末

融点

138~145℃(分解)

10小时半减期温度

86℃(水)

活性化能量

104.8KJ/mol K

频率因子(lnA)

24.29

溶解性

水、甲醇:比较易溶
     氯仿:不溶

SADT

100℃

毒性(LD50)

>2000 mg/kg(经口大鼠[雄])


◆包装·保存条件


5 kg  瓦楞纸箱

500 g  纸箱

25℃以下保存


相关法规·安全性


剧毒法

不符合

消防法

不符合

化审法

2-3578

安卫法

2-(6)-1209

TSCA

Listed

EINECS

Not Listed (ELINCS 429-090-3)


产品列表
产品编号 产品名称 产品规格 产品等级 备注
013-19342  2,2′-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]
 偶氮二甲基N-2-羟丁基丙酰胺
25 g
017-19345  2,2′-Azobis[2-methyl-N-(2-hydroxyethyl)propionamide]
 偶氮二甲基N-2-羟丁基丙酰胺
500 g

5-Methylcytidine-5′-Triphosphate


5-Methylcytidine-5′-Triphosphate

简要描述:5-甲基胞苷-5-三磷酸盐是TRILINK公司产品,用于干细胞研究用

详细介绍

产品咨询

5-甲基胞苷-5-三磷酸盐是TRILINK公司产品,用于干细胞研究用,5-methyl-ctp

Synonyms]
5-methyl-dCTP
5-methyldeoxycytidine triphosphate
CPD-1094
5-methyl deoxycytidine-5′-triphosphate
5-methyl-2′-deoxycytidine-5′-triphosphate
cytidine 5′-(tetrahydrogen triphosphate), 2′-deoxy-5-methyl-
[[[5-[(4-amino-5-methyl-2-oxo-1H-pyrimidin-1-yl)]-3-hydroxy-tetrahydrofuran-2-yl]methoxy-hydroxy-phosphinoyl]oxy-hydroxy-phosphinoyl]oxyphosphonic acid

[Structure]
 

[ Properties Computed from Structure]
 

Molecular Weight 481.183503 [g/mol]
Molecular Formula C10H18N3O13P3
XLogP -5.9
H-Bond Donor 6
H-Bond Acceptor 14
Rotatable Bond Count 8
Tautomer Count 3
Exact Mass 481.005247
MonoIsotopic Mass 481.005247
Topological Polar Surface Area 248
Heavy Atom Count 29
Formal Charge 0
Complexity 868
Isotope Atom Count 0
Defined Atom StereoCenter Count 0
Undefined Atom StereoCenter Count 3
Defined Bond StereoCenter Count 0
Undefined Bond StereoCenter Count 0
Covalently-Bonded Unit Count 1
Description
5-Methyl-dCTP is widely used for construction of cDNA libraries
 
Incorporation of 5-Methyl-dCTP
M-MuLV Reverse Transcriptase
Klenow Fragment of DNA Polymerase I
Sequenase DNA Polymerase
(Taq Polymerase, Vent) *
Incorporation of Hg-dCTP
DNA Polymerase I

References to 5-Methyl-dCTP
Lefaucheur et al. (1998) Evidence for three adult fast myosin heavy chain isoforms in type II skeletal muscle fibers in pigs. J. Anim. Sci. 76:1584.
Nelson et al. (1993) Restriction endonuclease cleavage of 5-methyl-deoxycytosine hemimethylated DNA at high enzyme-to-substrate ratios. Nucl. Acids Res. 21 (3):681.
Asamizu et al. (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Research 6:369.
* Wong et al. (1991) PCR with 5-methyl-dCTP replacing dCTP. Nucl. Acids Res. 19 (5):1081.
Reference to Hg-dCTP
Banfalvi et al. (1995) Effect of mercury substitution of DNA on its susceptibility to cleavage by restriction endonucleases. DNA Cell Biol. 14 (5):445.
 

 

N-1014-1 5-Methylcytidine-5′-TP 1umole 1317.5
N-1014-10 5-Methylcytidine-5′-TP 10umoles 10625
N-1014-5 5-Methylcytidine-5′-TP 5umoles 6205

 

Reference(s)
Kariko K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein encoding mRNA. (2011) Nucleic Acids Research.
         
Kormann M, Hasenpusch G, Aneja M, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. (2011) Nature Biotechnology 29:154–157.
         
Anderson, B., Muramatsu, H., Nallagatla, S.R., Bevilacqua, P.C., Sansing, L.H., Weissman, D. & Kariko, K. Incorporation of pseudouridine into mRNA enhances translation by dimishing PKR activation (2010) Nucleic Acids Research, 38(17): 5884-5892.
         
Warren et al., Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA, Cell Stem Cell (2010), doi:10.1016/j.stem.2010.08.012.
         
Kariko K, Muramatsu H, Welsh F, et al. Incorporation of Pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. (2008) Molecular Therapy (16)11: 1833-1840.
         
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modifiation and the Evolutionary Origin of RNA (2005). Immunity, 23(2), 165-175.
         
Lefmann M, et al. Novel Mass Spectrometry-based tool for genotypic identification of mycobacteria. (2004) Journal of Clinical Microbiology, 42(1): 339-346.
         
Hartmer R, Storm N, Boecker S, Rodi CP, Hillenkamp F, Jurinke C, van den Boom D. RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis. (2003) Nucleic Acids Res., 31(9): e47.
         
Nguyen A, Zhao C, Dorris D, Mazumder A. Quantitative assessment of the use of modified nucleoside triphosphates in expression profiling: differential effects on signal intensities and impacts on expression ratios. (2002) BMC Biotechnology, 2(1): 14.
         
Van Rompay AR, Norda A, Linden K, Johansson M, Karlsson A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine-cytidine kinases. (2001) Mol Pharmacol., 59(5): 1181-6.
         

 

Chiralix独脚金内酯的MSDS下载

订货信息:  都有现货 欢迎订货

货号

品名

CAS

价格¥

规格

品牌

CX23880-5MG (3aR*,8bS*,E)-3-(((R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-3,3a,4,8b-tetrahydro-2H-in 76974-79-3 5000 5 MG Chiralix2015
CX23880-20MG (3aR*,8bS*,E)-3-(((R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-3,3a,4,8b-tetrahydro-2H-in 76974-79-3 15000 20 MG Chiralix2015
CX23880-100MG (3aR*,8bS*,E)-3-(((R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-3,3a,4,8b-tetrahydro-2H-in 76974-79-3 35000 100 MG Chiralix2015

独脚金内酯(strigolactone,SL)zui初是从棉花中分离鉴定出的独脚金(Striga spp.)种子萌发的信号物质。因此被称为独脚金内酯[1] (Cook et al., 1966,1972)。后来进一步发现其具有多种生理功能,近年被证明为一种植物中普遍存在的新型植物激素

生理作用编辑

独脚金内酯具有刺激寄生植物种子萌发、促进丛枝菌根真菌菌丝产生分枝(Akiyama 2005), 直接或间接抑制植物侧芽萌发(Gomez-Roldan et a;., 2008; Umehara et al., 2008)和与寄主植物共生等诸多作用。其生理作用发挥与生长素和细胞分裂素有相互作用(crosstalk)[3]

独角金内酯zui初是由棉花根分泌液中分离出来的,被认为是独脚金属(Striga spp.)种子萌发的刺激物。它的另外一个作用就是作为植物根围与丛枝菌根真菌联接的一种*的化学信号,除了上述作用之外,独j脚金内酯或者它的代[4] 谢产物还作为一种新型的植物激素可以抑制植物分枝[5]

目前,上对独脚金内酯调控植物分枝发生的机理已经有了一定的研究基础,主要是基于生长素运输管道形成假说以及第二信使假说而提出的。生长素运输管道形成假说的核心观点是极性运输的生长素增多总是伴随着分枝的增多,关于独角脚内酯在生长素运输管道形成假说中所起的作用可以从一系列独角金内酯相关基因缺失突变体中得以研究,这一类突变体都呈现出较野生型分枝增多的表型。前人以独角金内酯合成基因突变体以及独脚金内酯信号基因突变体为研究对象,通过利用绿色荧光蛋白(GFP)标记的PIN报告基因得出独脚金内酯能够通过降低PIN蛋白在木质部薄壁组织细胞质膜上的积累来发挥作用,换句话说,独脚金内酯可以降低生长素的运输作用从而减少分枝的发生。[6-7]

GR24编辑

独脚金内酯的人工合成类似物GR24。属于独脚金内酯类的的植物生长调节剂。