Hampton蛋白结晶工具及仪器

Hampton蛋白结晶工具及仪器
CryoTong™ – Long
ApplicationsCrystal transfer under cryo temperature
FeaturesArtery clamp style closure30 seconds of cryo temperature180 mm length
Description
The CryoTong is a tool used to manually transfer a crystal mounted on a CrystalCap™ from liquid nitrogen to a magnetic base in a goniometer head positioned in a cryogenic stream, and then back to liquid nitrogen. The one-piece, compact CryoTong is available in two lengths. The long CryoTong is approximately 180 mm in overall length. The artery clamp style maintains the CryoTong in the closed position until the clamp is squeezed, which opens the opposing heads. The heads are non-magnetic stainless steel. The handle is magnetic stainless steel. The inside of the head is machined to closely surround the CrystalCap with loop and crystal in place. A small retaining lip is machined into the lower portion of the head to prevent the CrystalCap from slipping out of the CryoTong when the tool is in the closed position. The CryoTong can maintain the temperature of the crystal at -160°C for up to 30 seconds during room temperature crystal transfers. Choose the proper CryoTong size based upon the pin length required by the configuration of the x-ray data collection hardware used. The 18 mm CryoTong (HR5-112) is to be used with the CrystalCap HT and any other CrystalCap configured for 18 mm.HR5-114 Long CryoTong 18 mm, 180° features the head in alignment with the handle of the CryoTong.

图片

图片

图片

图片

图片

图片
Vial Clamp™ – Straight
ApplicationsVial support and manipulation
FeaturesStraight end tipHemostat style closureDescription
The Vial Clamp™ – Straight is a chrome plated, hemostat style tool. It has a tip shaped to hold the storage vial of all the CrystalCap Systems™ straight when the clamp is closed. The clamp can be locked using the hemostat style closure. This clamp makes it easy to dip the storage vial into liquid nitrogen for crystal storage. The complete length of the clamp is straight, with an overall length of 195 mm. When the vial is placed in the clamp, the length of it is positioned perpendicular, 90° to the length of the clamp.
图片
CrystalWand™ Magnetic
ApplicationsCrystalCap Magnetic & CrystalCap Copper Magnetic handling toolDescription
The CrystalWand Magnetic is designed to be used exclusively with the CrystalCap Magnetic, CrystalCap Copper Magnetic, and CrystalCap HT systems during transfer of the caps from the vial to the goniometer head and from the goniometer to the vial. The 6 1/2” (165 mm) long chrome plated steel wand features a plastic housing enclosing a spring tensioned plunger that when depressed, moves a non-magnetic steel platform away from the magnet housed in the end of the wand. This causes the steel CrystalCap to detach from the wand and be placed readily into the vial or the CryoTong™. When the platform is retracted, the wand securely holds the steel CrystalCap Magnetic. The CrystalWand Magnetic 45° (McMiken Tool) offers the same functionality but is bent at a 45° angle at approximately 2.5 cm from the magnet end.HR4-729 CrystalWand Magnetic, StraightHR4-315 CrystalWand Magnetic, 45° (McMiken Tool)
图片

图片

图片
Vial Clamp™ – Curved
ApplicationsVial support & manipulation
FeaturesCurved end tipHemostat style closureDescription
The Vial Clamp – Curved is a chrome plated, hemostat style tool. It has a tip shaped to hold the storage vial of all the CrystalCap Systems at an angle when the clamp is closed. The clamp can be locked using the hemostat style closure. The end of the clamp, where the vial is held, is curved at either a 45°/135° or 110°/ 70° angle. When the vial is placed in the clamp, the length of it is positioned to the clamp at either of those same angles. The overall length of each clamp is the same, 195 mm.HR4-671 Vial Clamp – Curved 45°/135°HR4-672 Vial Clamp – Curved 110°/70°
图片

CrystalCap™ Holder
pplicationsCrystalCap support inside stainless steel dewars
FeaturesAdjustable heightSupports up to 8 CrystalCaps15 ml vial position for liquid propane500 and 1,000 ml versionsDescription
CrystalCap Holders are convenient stands for holding all CrystalCap™ systems in liquid nitrogen dewars during crystal cryogenic procedures. Available in two sizes. Both holders feature spring-clips to secure the CrystalCap Vials in the holder. Both stands have 3 inches of adjustable Z (height) which allows one to raise or lower the CrystalCaps to the appropriate height, depending upon the liquid nitrogen level in the dewar. Each holder is supplied with a socket driver for height adjustment.500 ml version holds five CrystalCaps, two 15 ml vials (for liquid propane procedures) and fits into the 500 ml dewar. 1,000 ml version holds eight CrystalCaps, two 15 ml vials (for liquid propane procedures) and fits into the 1,000 ml dewar.HR4-707 CrystalCap Holder – 500 ml
HR4-706  Replacement Height Adjustment Tool
图片

图片

Hampton Solubility & Stability Screen

Hampton Solubility & Stability Screen

Solubility & Stability Screen(溶解度和稳定性的屏幕)
应用:溶解性和稳定性屏幕的设计,以协助识别解决方案的条件,促进蛋白质的溶解性和稳定性,并尽量减少蛋白质沉淀。
Solubility & Stability Screen
Solubility & Stability Screen
Solubility & Stability Screen
Solubility & Stability Screen HR2-072
Applications

A solubility screen, a stability screen, an additive screen for protein assays including ThermoFluor and crystallization
Preformulation screening

 

Compatible with Thermofluor , Differential Scanning Fluorimetry (DSF), and Protein Thermal Shift assays
96 sterile filtered reagents
17 classes of reagents and excipients
Highly concentrated (10x) reagent formulation
Developed at Hampton Research

Features
Methodologies

Thermal shift assay
Dynamic Light Scattering
Use Solubility & Stability Screen along side Slice pH and Solubility & Stability Screen 2 to optimize sample buffer
Description

Solubility & Stability Screen is designed to assist in the identification of solution conditions which promote protein solubility and stability, and minimize protein precipitation. Solubility & Stability Screen is a solubility screen, a stability screen, and may also be used as an additive screen in the presence of a crystallization reagent.
The Hampton Research Solubility and Stability Screen can evaluate protein solubility, stability and crystallization in the presence of 94 different chemical additives sampling 17 different classes of reagents plus two controls.
Protein solubility and stability are universally required in a wide range of applications, including general biochemical studies, the preparation of proteins in pharmaceuticals, structural biology and crystallization.1-11The preparation of a concentrated, soluble and stable protein sample can often be a difficult task as proteins often aggregate, precipitate or denature.
Thermofluor (also known as Differential Scanning Fluorimetry, DSF and Protein Thermal Shift) provides a rapid, convenient and effective means of identifying subsaturating solution conditions that may also correlate with protein heterogeneity and poor crystallization outcomes.12
Protein solubility and stability is affected by many different chemical factors including pH, buffer type, chemical additives and excipients. pH and buffer type are dominant protein solubility and stability variables and can be evaluated and optimized using the Hampton Research Slice pH kit HR2-070. Slice pH evaluates protein solubility, stability and crystallization versus 20 different buffers over the pH range 3.5-9.6. Chemical additives influencing protein solubility and stability can be evaluated using the Solubility & Stability Screen.
It is widely accepted that protein solubility and stability can be increased by the use of chemical additives.5,15Seventeen classes of reagents are sampled by the Solubility & Stability Screen and each of these classes has been reported as important in improving sample solubility and stability.2-11
The Solubility & Stability Screen is a set of 94 high purity reagents formulated in high purity water (NCCLS/ASTM Type 1+) at 25°C and are 0.22 micron sterile filtered. The 94 solubility and stability reagents are formulated at 2 to 10 times their recommended working concentration. The remaining two reagents are water and a negative (TCA) control. A water control demonstrates the effect of diluting sample as well as sample buffer concentration. TCA, the negative control, demonstrates total sample precipitation, loss of sample solubility and loss of sample stability. The effects of the Solubility & Stability reagents can be compared with this negative control to assist in the identification of reagents promoting sample solubility and stability. 500 microliters of each reagent is supplied in a sterile 96 well polypropylene Deep Well block. The Solubility & Stability Screen reagents are compatible with the sitting or hanging drop vapor diffusion, microbatch, free interface diffusion, sandwich drop vapor diffusion, and dialysis crystallization methods utilizing water soluble reagents.

Hampton AlumaSeal™ II Sealing Film and Applicator

Hampton AlumaSeal™ II Sealing Film and Applicator

Applications
Sealing film used to reseal HT format screen kits in polypropylene blocks and plates
Features
Excellent seal
Film conforms to raised chimney wells
Easily pierceable with single or multichannel pipettors and robotic probes
Heat & cold resistant, recommended for temperatures from -80 °C to +120 °C
Certified DNase-, RNase-, and nucleic-acid-free
Less evaporation than clear films
Excellent barrier properties, virtually no reagent evaporation or drying
 Description
A 38 µm soft non-permeable aluminum foil sealing film with strong medical-grade adhesive, AlumaSeal II sealing films eliminate the need for heat-sealing devices or mats during the resealing of reagents in polypropylene deep well blocks. Each sealing film measures 82.6 x 142.9 mm and offers sufficient sealing area for 96 deep well blocks. Length between the perforations with end tabs removed is 125.4 mm. Compared to other aluminum foils, AlumaSeal II has less tendency to roll back on itself when removing the backing paper and it conforms well to the plate during application.AlumaSeal II is a soft, pierceable adhesive film designed for the convenient and rapid sealing of polypropylene deep well blocks. A multiple split backing with two end tabs allows for easy, accurate positioning and secure sealing. The use of an adhesive sealing film minimizes evaporation and helps to prevent well-to-well cross contamination in reagent blocks. AlumaSeal II films are easily pierced by pipettte tips or robotic probes or piercing tools for direct reagent recovery without significant gumming by adhesive.
AlumaSeal™ II Sealing Film and Applicator
AlumaSeal™ II Sealing Film and Applicator

CAT NO NAME DESCRIPTION
HR8-069 AlumaSeal II Sealing Film 100 pack
HR4-413 Film Sealing Paddle 5 pack

Hampton GRAS 1 • GRAS 2 Screens

Hampton GRAS 1 • GRAS 2 Screens

stallization screen for proteins, including monoclonal antibodies, where Polyethylene glycol is the primary, and Salt the secondary reagent, sampling pH 4-9
GRAS 1 • GRAS 2 ScreensGRAS 1 • GRAS 2 Screens Identify GRAS based reagents that promote crystallization of biotherapeutics for bioprocess, bioformulation, and continuous flow manufacturing applications
Features

Developed at Hampton Research
Generally Recognized As Safe reagent formulation
Samples pH 4.0 – 9.0 without an added buffer
Primary crystallization reagent:

GRAS Screen 1: PEG 300, 400, MME 550, & 600
GRAS Screen 2: PEG 1,000, MME 2,000, 3,350 & 4,000
Secondary crystallization reagent:

24 unique salts
Compatible with Vapor diffusion, microbatch, free interface diffusion
Reagents soluble between 4°C and 30°C

Description
GRAS Screen™ 1 and GRAS Screen™ 2 were developed by Hampton Research for the crystallization of proteins, including monoclonal antibodies. Each of the chemicals in GRAS Screen 1 and 2 have been used under one or more of the following categories. As (1) a Generally Recognized As Safe (GRAS) substance, (2) a pharmaceutical excipient, (3) a normal physiological constituent, (4) a metabolic byproduct, and/or (5) a Everything Added to Food in the United States (EAFUS) substance.
GRAS Screen 1 samples four low molecular weight Polyethylene glycols (300, 400, MME 550, and 600) versus twenty-four salts, encompassing pH 4-9. GRAS Screen 1 is supplied in a 96 Deep Well block format and is compatible with robotic and multi-channel pipet liquid handling systems. GRAS Screen 1 is compatible with vapor diffusion, free interface diffusion, and microbatch crystallization methods. For research use only.
GRAS Screen 2 samples four medium molecular weight Polyethylene glycols (1,000, MME 2,000, 3,350, & 4,000) versus twenty-four salts, encompassing pH 4-9. GRAS Screen 2 is supplied in a 96 Deep Well block format and is compatible with robotic and multi-channel pipet liquid handling systems. GRAS Screen 2 is compatible with vapor diffusion, free interface diffusion, and microbatch crystallization methods. For research use only.

CAT NO NAME DESCRIPTION
HR2-451 GRAS Screen 1 1 ml, Deep Well block format
Price Quantity
$245.00
CAT NO NAME DESCRIPTION
HR2-452 GRAS Screen 2 1 ml, Deep Well block format
Price Quantity
$245.00

Hampton GRAS 5 • GRAS 6 Screens

Hampton GRAS 5 • GRAS 6 Screens
Applications
 GRAS reagent crystallization screen for proteins, including monoclonal antibodies, where Polyethylene glycol is the primary reagent, sampling pH 4.5 to 10
. Identify GRAS based reagents that promote crystallization of biotherapeutics for bioprocess, bioformulation, and continuous flow manufacturing applications
Features

Developed at Hampton Research
Generally Recognized As Safe reagent formulation
Samples pH 4.5 to 10; 8 unique buffers
Primary crystallization reagent:

GRAS 5: PEG 300, 400, MME 550, & 600
GRAS 6: PEG 1,000, MME 2,000, 3,350 & 4,000

 

Vapor diffusion, microbatch, free interface diffusion
Reagents soluble between 4°C and 30°C

Description

GRAS Screen™ 5 and 6 were developed by Hampton Research for the crystallization of proteins, including monoclonal antibodies. Each of the chemicals in GRAS Screen 5 and 6 has been used under one or more of the following categories. As (1) a Generally Recognized As Safe (GRAS) substance, (2) a pharmaceutical excipient, (3) a normal physiological constituent, (4) a metabolic byproduct, and/or (5) a Everything Added to Food in the United States (EAFUS) substance.
GRAS Screen 5 samples four low molecular weight Polyethylene glycols (300, 400, MME 550, and 600) at three concentrations versus eight unique buffers encompassing pH 4.5 to 10. GRAS Screen 5 is supplied in a 96 Deep Well block format and is compatible with robotic and multi-channel pipet liquid handling systems. GRAS Screen 5 is compatible with vapor diffusion, free interface diffusion, and microbatch crystallization methods. For research use only.
GRAS Screen 6 samples four medium molecular weight Polyethylene glycols (1,000, MME 2,000, 3,350, & 4,000) at three concentrations versus eight unique buffers encompassing pH 4.5 to 10. GRAS Screen 6 is supplied in a 96 Deep Well block format and is compatible with robotic and multi-channel pipet liquid handling systems. GRAS Screen 6 is compatible with vapor diffusion, free interface diffusion, and microbatch crystallization methods. For research use only.

Hampton蛋白结晶小瓶和结晶柱底座CrystalCap™

Hampton蛋白结晶小瓶和结晶柱底座CrystalCap™

Applications

Cryocrystallography  低温结晶学
Features

SSRL style sample mount for cryocrystallography
CrystalCap attaches magnetically to CrystalCap Vial and Magnetic Goniometer Base
Conical shape with ledge compatible with SSRL style grippers, auto mounters and sample handlers

Description
The CrystalCap is a magnetic sample mount (also known as a cap, pin or goniometer base) designed for cryocrystallography systems that accept SSRL style sample mounts. The CrystalCap attaches to a magnetic CrystalCap Vial and Magnetic Goniometer Base. The tip of the CrystalCap accepts a Mounted CryoLoop™ or MicroTube™ fitted with a CryoLoop™.
The CrystalCap Vial is a 1.8 ml cryo vial featuring two small vents. A ring magnet is molded into the open end of the vial so that when the cap is positioned in the vial, the ring magnet holds the cap on the vial during cryogenic storage.The HR4-904 CrystalCap Vial does not have a magnet on the bottom of the vial.
The conical shape with ledge is compatible with SSRL style grippers, auto mounters and sample handlers.
Compatible with the following Synchrotron Radiation Beamlines
North & South America
• The Advanced Light Source, Berkeley, California ALS 4.2.2, ALS 11.3.1, ALS 12.2.2, ALS 12.3.2
• The Advanced Photon Source, Argonne, Illinois APS 14-BM-C BioCARS, APS 14-ID-B BioCARS
• Cornell High Energy, Synchrotron Source, Ithaca, New York CHESS A1, CHESS F1
• Canadian Light Source, Saskatchewan, Canada, CLS 08ID-1, CLS 08B1-1
• National Synchrotron Light Source, Upton, New York NSLS X4C
• Stanford Synchrotron Radiation Laboratory, Menlo Park, California SSRL BL7-1, SSRL BL9-1, SSRL BL9-2, SSRL BL11-1, SSRL BL12-2, SSRL BL14-1
Asia & Australia
• Shanghai Synchrotron Radiation Facility, Shanghai, China SSRF BL17U1
• National Synchrotron Radiation Research Center, Taiwan NSRRC BL13B1, NSRRC BL13C1
• Pohang Accelerator Laboratory, Pohang, South Korea PAL 2D, PAL 5C, PAL 7A
• Photon Factory, Tsukuba, Japan PF BL-5A, PF BL-17A, PF AR-NW12A
• Super Photon ring-8 GeV, Japan SPRING-8 BL12B2, SPRING-8 BL24XU, SPRING-8 BL26B1, SPRING-8 BL26B2, SPRING-8 BL32B2, SPRING-8 BL32XU, SPRING-8 BL38B1, SPRING-8 BL41XU, SPRING-8 BL44B2, SPRING-8 BL44XU
CrystalCap™
CrystalCap
CrystalCap™
CrystalCap & Vial
CrystalCap™
CrystalCap
Hampton蛋白结晶小瓶和结晶柱底座 CrystalCap™

CAT NO NAME DESCRIPTION
HR4-733 CrystalCap with Vial – 60 pack
HR4-902 CrystalCap without Vial – 60 pack
HR4-904 CrystalCap Vial Vial only – 30 pack

Hampton 蛋白结晶删选试剂– Index HT

Hampton 蛋白结晶删选试剂– Index HT
Applications
Primary, diverse reagent system crystallization screen for proteins, complexes, peptides, nucleic acids, & water soluble small molecules
多样结晶试剂系统删选试剂盒,用于蛋白质,复合物,肽,核酸,和水溶性的小分子。
Features
 Developed at Hampton Research
Screens classic, contemporary, & modern crystallization reagents
Samples pH 3 to 9
Compatible with microbatch, vapor diffusion, & liquid diffusion methods
Specially formulated reagent zones:
1 .Traditional salts versus pH
2.Neutralized organic acids
3.High [salt] with low [polymer]
4.High [polymer] with low [salt]
5.Low ionic strength versus pH
6.PEG & Salt versus pH
7.PEG & Salt
 Tube or Deep Well block format

Description
Index is designed as a 96 reagent crystallization screen that combines the strategies of the grid, sparse matrix, and incomplete factorial screening with traditional, contemporary, and new crystallization reagent systems into a highly effective and efficient format.
Index, as the name implies, efficiently samples a series of specially formulated reagent zones to identify which reagent class or classes and pH are effective in producing crystals or limiting sample solubility. Results from Index can be used to design optimization experiments and to identify follow on screens by reagent class. For example, positive results with salt based reagents in Index may be followed up with further screening using SaltRx or Grid Screen Salt HT. Success with polymer based reagents in Index may be followed up with further screening using PEGRx or PEG/Ion.
Index utilizes a broad, yet refined portfolio of crystallization reagent systems. These include the following: (1) traditional salts such as Ammonium sulfate and Sodium chloride versus pH; (2) neutralized organic acids such as Sodium malonate and Tacsimate; (3) High salt concentration mixed with low polymer concentration as well as high polymer concentration mixed with low salt concentration and; (4) Low ionic strength using polymers such as PEG, MPD, Pentaerythritols versus pH. These reagent systems are formulated across a sparse matrix and incomplete factorial of concentration ranges, sampling a pH range of 3 to 9.
Index contains 96 unique reagents, 10 ml each.
Index HT contains 96 unique reagents in a single Deep Well block format.
Ready-to-use reagents are sterile filtered and formulated with ultra-pure Type 1 water, using the highest purity salts, polymers, organics and buffers. Individual reagents are available through the Hampton Research Custom Shop.
Measured pH range of kit is 3 to 9 at 25°C
Average measured pH of kit is 6.8 at 25°C
Median measured pH of kit is 6.9 at 25°C
Index • Index HT
Index • Index HT
Apo Kinase crystal. Initial hit from the Hampton Research Index Screen. Annie Hassell, Glaxo Smithkline.
Index • Index HT
Crystal of a heme-based sensor from Thermoanaerobacter Tengcongensis grown using the Hampton Research Index screen. Patricia Pellicena & John Kuriyan at University of California, Berkeley, USA.

CAT NO NAME DESCRIPTION
HR2-144 Index 10 ml, tube format
HR2-134 Index HT 1 ml, Deep Well block format

Hampton Natrix • Natrix 2 • Natrix HT

Hampton Natrix • Natrix 2 • Natrix HT

Applications
  Primary biased sparse matrix crystallization screen for nucleic acids & protein/nucleic acid complexes  主要用于核酸和蛋白质/核酸复合物的删选
Features

Nucleic acid sparse matrix screen
Sparse matrix formulation efficiently samples salts, polyols, polymers, organics, additives & pH
pH range 5.6 – 8.5
Tube or Deep Well block format
 Description
Natrix, Natrix 2 and Natrix HT are based upon published reagent formulations for the crystallization of nucleic acids and protein-nucleic acid complexes. A variety of hammerhead ribozymes and other ribozymes, RNAs, DNAs, RNA-drug complexes, and RNA-protein complexes have been crystallized using the Natrix protocols.By using sparse matrix sampling technology, The Natrix kits allow one to quickly test wide ranges of pH, salts, and precipitants using a very small sample of nucleic acid.
Natrix screens are unique in that rather than relying solely on the traditional nucleic acid precipitant MPD, Natrix screens also utilize Polyethylene glycols (PEGs) in a variety of molecular weights (200, 400, 4,000, 8,000) as well as 2-Propanol, Polyethylene glycol monomethyl ether (PEG MME), and 1,6-Hexanediol. Many of the polymeric and low molecular weight organic precipitants are combined with various monovalent salts as precipitating agents. This combination of salts and low molecular weight organics and polyalcohols, as well as the utilization of varying chain length PEGs, has proven to be a successful combination for producing nucleic acid and protein-nucleic acid complex crystals.
Natrix contains 48 unique reagents, 10 ml each and is based on the sparse matrix formulation first described by William Scott in 1995.
Natrix 2, an extension of Natrix, contains 48 unique reagents, 10 ml each. Natrix 2 is a biased sparse matrix screen based on extracting patterns from crystallization data as well as reagent formulations first described by Berger et al in 1996.
Natrix HT contains 1 ml of each reagent from Natrix and Natrix 2 in a single Deep Well block format.
Ready-to-use reagents are sterile filtered and formulated with ultra-pure Type 1 water, using the highest purity salts, polymers, organics and buffers. Individual reagents are available through the Hampton Research Custom Shop.
Natrix • Natrix 2 • Natrix HT
Natrix • Natrix 2 • Natrix HT
View Full Size
Natrix • Natrix 2 • Natrix HT

 

CAT NO NAME DESCRIPTION
HR2-116 Natrix 10 ml, tube format
HR2-117 Natrix 2 10 ml, tube format
HR2-131 Natrix HT 1 ml, Deep Well block format

Hampton 蛋白结晶向导管Wizard Tube

Wizard Tube 
The Wizard™ Classic line of random sparse matrix screens is designed to increase your probability of producing crystals during the coarse screening phase when crystallizing biological macromolecules (proteins, nucleic acids, peptides, and combinations thereof).
The Wizard Classic reagents are proven to be a highly effective starting point in the screening of biological macromolecules. The Wizard Classic formulations include a large range of crystallants, buffers, and salts covering a broad range of crystallization space at pH levels from pH 4.5 to pH 10.5.Choose from Wizard Classic 1, 2, 3, or 4 non-overlapping formulations in matrix blocks or tubes.

图片
Wizard Cubic LCP
The tools in the Wizard Cubic LCP (lipidic cubic phase) Kit enable researchers to prepare LCP-type crystallizations by hand. Ideal for low-protein experiments: effective protein volume for a single crystallization experiment is about 80 nanoliters. Wizard Cubic LCP Kit tools work especially well when traditional methods have failed to yield crystals. Lipidic cubic phase has worked well for the crystallization of 7TM membrane proteins (proteins with seven transmembrane helices). Four out of six GPCRs (G-protein coupled receptors), an important membrane protein class, and several microbial 7TM proteins have been crystallized using the LCP approach.
图片
CRYO (I、II)
The Wizard Cryo™ line of random sparse matrix screens is designed for scientists who want to avoid the additional step of optimizing a cryoprotectant condition. Every Wizard Cryo formulation flash-freezes to a clear, amorphous glass in liquid nitrogen or in a cryo-stream at 100K. Crystals can be frozen directly from their growth drops, avoiding the additional step of pre-equilibration with an artificial cryo-condition that can damage the crystal. Eleven different cryocrystallants and sparing use of glycerol ensures a broad sampling of possible cryo conditions. Choose from Wizard Cryo 1 or 2 formulations in tubes or Wizard Cryo 1 and 2 together in a 96-well matrix block.
图片